
SOME NONPARAMETRIC TESTS 
FOR RANDOMNESS I N  SEQUENCES 

by Peter D. Argentiero and Robert H.  ToZson 

Langley Research Center 
LangZey Station, Humpton, Va. 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  WASHINGTON,  D. -l.::D.E.C Ei MB E R 1 9 6 6 

111111111 I 111111.1.11111.11111.1.1 I I, 1 1 . 1 1 1 1 . 1 1 1 . 1  I... ......I ,,--- --.._.._. 



NASA TN D-3766 
TECH LIBRARY KAFB. NM 

. .._ 
0130427 


SOME NONPARAMETRIC TESTS FOR RANDOMNESS IN SEQUENCES 

By Peter D. Argentiero and Robert H. Tolson 

Langley Research Center 
Langley Station, Hampton, Va. 

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $1.00 



SOME NONPARAMETRIC TESTS FOR RANDOMNESS IN SEQUENCES 

By Peter D. Argentiero and Robert H. Tolson 
Langley Research Center 

SUMMARY 

A rigorous definition of the concept of a random sequence is stated and statistical 
t es t s  of the hypothesis that a given data sequence is random are discussed and tables a r e  
provided to facilitate the use of these tests. Certain tes t s  a r e  recommended for the 
detection of periodic nonrandomness and others a r e  recommended for the detection of 
nonperiodic nonrandomness. A battery of tes ts  designed specifically for the detection of 
periodic nonrandomness is constructed and examples of its use a r e  given. The same is 
done for a battery of tes t s  designed for the detection of nonperiodic nonrandomness. The 
question of the relationship between the confidence coefficient of a battery of tes ts  and 
the confidence coefficients of the individual tes ts  of the battery is considered. 

INTRODUCTION 

The determination of the best f i t  to a given set of data is a frequent objective of 
mathematical analysis. Examples of particular interest occur in orbit determination and 
in determination of gravitational field coefficients and other parameters from analysis of 
tracking data. After a "best fit" is obtained, it is important to examine the residuals or 
differences between the predicted data set and the observed data set. If these residuals 
do not form a random sequence, one might suspect that important parameters have been 
neglected or misrepresented in the analysis. 

The object of this study is to discuss various methods of testing sequences for ran­
domness and to  provide examples of the application of these tes ts  to given sequences. 
Intuitively speaking, a random sequence of numbers is a sequence in which the particular 
values of the elements a r e  not a function of their position in the sequence. Even more 
loosely, a random sequence of numbers is a sequence in which nothing deterministic is 
taking place. However, if statistical tests are to  be developed for deciding whether a 
given sequence is random, a considerably more rigorous definition of randomness is 
needed. To develop such a definition, assume that the ith element of a given sequence is 
a particular value of a random variable with which is associated in the usual fashion a 
probability density function fi(X). For the purposes of this paper the sequence is said 
to be random if for any value of i or j ,  fi(X) = fj(X). From this definition it is clear 

1 



that the particular order in  which the values of a random sequence present themselves 
was no more likely to have occurred than any other ordering. This notion that each per­
mutation of a random sequence has the same probability of occurring is the basis of all 
the statistical tes ts  for randomness which will be developed. It should also be mentioned 
that most of the tests mentioned a r e  nonparametric in the sense that in the formulation of 
each test, no assumptions are made concerning the parameters of the probability density 
function used in the definition of a random sequence. 

Several tes ts  for randomness a r e  discussed in this paper. Some a r e  developed in 
detail and references are given for others. The use of several of these tes ts  is then 
demonstrated by applications to given sequences and the results obtained are presented. b 

The reader who is unfamiliar with statistical terminology is urged to consult one of the 
standard references in mathematical statistics such as reference 1. 

SYMBOLS 


sets  

te rms  defined by equations (13b) and (13c), respectively 

elements of A and B, respectively 

constants 

term defined by equation (5) 

function 

term defined by equation (14) 

set  of all integers i, such that an element from A occupies ith position 
in a sequence 

value of a normally distributed random variable with mean zero and variance 
unity and for which the probability of exceeding Kp is p 

nonnegative integers 

length of run 
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N a  number of elements in A 

Nb number of elements in B 

P probability 

-
P confidence coefficient of a sequence of tests 

R term defined by equation (9) 


ra number of runs of elements from set 


l"b number of runs of elements from set 


T an index 


U number of runs in a sequence 


U r  term defined by equation (10) 


x1 ith element in a sequence 


X r  wavelengths 

7 term defined by equation (8)  

O r  term defined by equation (11) 

XT term defined by equation (12) 

A 

B 

RUNS TEST 

Several tests for randomness in sequences a re  based on the concept of runs and on 
the probability density function which will now be derived. Consider two sets of 
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elements A and B containing Na and Nb elements, respectively. Let the elements 
of the se t s  form a sequence of Na + Nb points. Each maximal subsequence of elements 
of like kind is called a run. The two types of runs must alternate so that the number of 
runs is always one plus the number of unlike neighbors in the given sequence. For 
example, letting the symbol a represent a number from a set A and the symbol b 
represent a number from a set B, the sequence 

a a b a b b a a b a b b  

contains eight runs. If it is assumed that each permutation of the Na + Nb elements is 
equally likely to occur, the question is what is the probability of finding any specified 
number of runs in the sequence. 

Since each permutation is equally likely to occur, the probability of obtaining 
exactly U runs in the sequence is given by the number of permutations which provide 
exactly U runs divided by the total number of permutations N a  + Nb things in which 
N a  objects a r e  indistinguishable from each other and the Nb objects are indistinguish­
able from each other. The denominator of the probability in question is 

(Na+Nb)!- N!-
Na! Nb! Na!Nb! 

Deriving the numerator of the probability ratio is more difficult. Let Na and Nb 
be, respectively, the number of elements from sets A and B. Consider the number of 
runs from A first and notice that the runs from B serve only to separate the elements 
from A into ra separate compartments. There a r e  ra - 1 runs of elements from 
B. (If a run of elements from B appears either at the end o r  at the beginning of the 
sequence, they do not have an influence on the number of runs of elements from A and 
hence a r e  not counted.) Therefore, the number of ways in which ra runs can be 
obtained is 

The same argument applies to the elements from B; hence, the number of permutations 
giving Nb runsf rom B is 

Suppose that the sequence begins with an element from A. Then for each permutation of 
the Na elements, the Nb elements can be permutated in  all possible ways in  their runs 
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to give distinct permutations of the N a  elements and the Nb elements jointly. Conse­
quently, the total number of permutations of the N a  elements and the Nb elements 
together and starting with an element from A is the product of equations (2) and (3), 
namely, 

The same relationship applies if the sequence begins with an element from B. 
4 	 Since the runs of elements from A and B alternate, either ra = r b  o r  ra = 'b f 1. 

If ra = r b  + 1, the sequence begins with a run from A. If ra = rb - 1, the sequence 
begins with a run from B. In either case there is no choice for the first run and the 
number of permutations is given by expression (4). If ra = rb, there are two possible 
choices for the first run. Hence the total number of permutations is given by 

UIf U is even, ra = rb = -.2 If U is odd, there are two cases  to consider; either 

u + l  u - 1ra = -2 and l'b = -
2 

or ra=-u -
2 

1 and Q = -+ Combining this fact with2 .  
expressions (5) and (1)yields the probability density function for U, the number of runs: 

for U an even integer and 

for  U an odd integer and f(U) = 0 otherwise. 

Extensive tables for  integrated o r  summed values of this function for various values 
of N a  and Nb along with several examples of their use are given in reference 2. A 
more detailed derivation of equation (6) together with an abbreviated table of its inte­
grated values is provided in reference 1(pp. 293-299). 
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If N a  = Nb 2 20 and if  the confidence level P satisfies the condition 
1-

4Na s p s 1 - -4Na' approximate formulas for the critical number of runs Up can be 

obtained. One such formula is given in  reference 3, namely, 

where Kp is the value of a normally distributed random variable with mean zero and 
variance unity for which the probability of exceeding KP is p. Critical values of the 
number of runs for certain standard confidence levels and fo r  certain numbers of ele­
ments Na = Nb as calculated from equation (7) a r e  given in table I. Since equation (7) 
does not always give integral values, a conservative approach was utilized to obtain 
table I, that is, for P < 0.5 the largest  integer less than o r  equal to the value of Up 
from equation (7) was taken and for P > 0.5 the smallest integer greater than or equal 
to the value of up from equation (7) was taken. 

TABLE 1.- CRITICAL VALUES OF U 
__ 

Na = Nb Up for a probability of ­
~ 

0.005 0.01 0.025 0.975 0.99 0.995 

20 13 14 15 28 29 30 
30 21 22 23 40 41 42 
40 30 31 32 51 52 53 
50 38 39 41 62 64 65 
60 47 48 50 73 75 76 
70 56 57 59 84 86 87 
80 65 66 68 94 97 98 

~ . ~ __ 

90 74 75 78 105 108 109 
100 83 85 87 116 118 120 

THE MEDIAN TEST 

An application of the concept of runs and of probability density function (6) is pro­
vided in what is known as the median test. (See ref. 2.) The procedure is as follows: 
Given a sequence to be tested for  randomness, determine the median of the sequence. A 
run of length 2 is a sequence of values of length 2 such that all the 2 values a r e  
above the median or  all the 2 values a r e  below the median. If the null hypothesis is to 
be that the sequence is random, each permutation of its elements was as likely to have 
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occurred as another. Hence, the number of runs of the type just described is a random 
variable whose probability density function is given by equation (6). Thus, table I or the 
more elaborate tables provided in reference 2 can be used to test  the null hypothesis that 
the sequence is random. For instance, suppose a sequence of length 100 is to be tested 
for randomness by using the median test. The numbers Na and Nb a r e  defined, 
respectively, as the number of elements above and below the median; thus, Na = Nb = 50. 
If a confidence coefficient of 0.95 is chosen, consulting table I shows that with a probabil­
ity of 0.95 the number of runs occurring should be between 4 1  and 62. If the number of 

0 	 runs is not between 4 1  and 62, with a confidence coefficient of 0.95, the hypothesis that 
the sequence is random can be rejected. 

c 

It should be clear that if a sequence tends to be periodic with a long period, several  
long runs would be introduced and since the sequence is finite, this condition would tend 
to produce fewer runs than would be expected in  a random sequence. Conversely, if  a 
sequence tends to have a very short period, too many runs would be expected. Thus the 
median test should be useful in detecting periodicities of long or short duration. This 
discussion leaves open the question of what, insofar as the median test is concerned, con­
stitutes a periodicity of a long or  a short period. In other words, is it true that random 
sequences exhibit a sor t  of periodicity of their own? In a sense the answer appears to be 
yes! If one divides the expected value of probability density function (eq. (6)) by the 
length of the sequence in  question, the answer is invariably about 1/2. Thus a periodic 
sequence of period 4 points would exhibit about the same number of runs as a random 
sequence of the same length. In this crude sense, a random sequence can be said to have 
a natural period of around 4 points. Hence, the median test should not be expected to be 
sensitive to periodicities of this length. 

A TWO-SAMPLE TEST 

The concept of runs and the probability density function (eq. (6)) a r e  useful in con­
structing nonparametric tes ts  of a nonsequential nature. Consider the problem of deter­
mining when two different sets  of numbers a r e  sets  of values of the same random variable. 
A test can be constructed in this manner. Suppose there a r e  N a  elements in sample A 
and Nb elements in sample B. Arrange the N a  + Nb elements in descending order  of 
magnitude. If it is assumed as a null hypothesis that each set consists of values of the 
same random variable, the Na + Nb elements constitute a set  of values from this random 
variable and hence all permutations of the elements should be equally likely to have 
occurred when ordered in  descending magnitude. Thus, if  a run of length 2 is defined 
as 2 elements in a row all from the same set, either A or B, then the probability 
density function for the number of runs of this type in  the ordered set  of N a  + Nb ele­
ments is again given by equations (6). Thus, the tables in reference 2 can be used to test 
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the null hypothesis in  the same way as with the median test. An example of this sor t  of 
test is given in  reference 4 (page 263). It should be mentioned that it is also possible to 
derive the probability density function for the longest run of any particular sor t  in a 
sequence and base a test for randomness on this statistic. This possibility is discussed 
in  reference 5. 

WILCOXON'S TEST 

Another method for  testing the hypothesis that two sets of numbers are values of 1 
the same random variable is the Wilcoxon test. It differs from the two sample tes ts  dis­
cussed previously in that it in  no way relies on the concept of runs or on the probability 3 

density function (eq. (6)). Again, consider two sets of data A and B of N a  and Nb 
points, respectively. Arrange the N a  + Nb numbers in descending order of magnitude. 
Let Ia be the set of all integers i, such that an element from A occupies the ith posi­
tion in  this sequence. If se t  A and set  B consist of values from the same random 
variable, each set of Na places occupied by the elements from A in the sequence is 
as likely to occur as any other set of Na places. By making this assumption, a prob­

ability density function for  the statistic S = 1 i may be derived. The derivation of 
i e Ia 

this function along with tables of its integrated values are provided in reference 6. 
Examples of how to use these tables to test  the hypothesis that two sets  of numbers a r e  
values of the same random variable can be found in reference 4 (pp. 264-265). 

SERIAL CORRELATION 

If a sequence of numbers is random, no particular correlation would be expected to 
exist between a value in the sequence and the value, for example, k places in front of it. 
That is, if Xi is defined to be the value in the ith position in the sequence and Yi, to  be 
xi+k, the correlation between Xi and Yi should not be significant. Based on this 
notion, a nonparametric method of testing sequences for randomness can be devised i f  it 
is assumed that all permutations of the sequence being considered .are equally probable. 
Define the serial correlation coefficient with lag k to be the linear correlation coeffi­
cient between Xi and Yi. Since there a r e  N! possible permutations, there are N! 
possible values of the ser ia l  correlation coefficient to be computed. The ordered set  of 
values obtained together with the relative frequencies of those values which a r e  obtained 
more than once provides the distribution of the ser ia l  correlation coefficient. If the 
sequence being tested yields a large positive or negative value of the serial  correlation 
coefficient, its randomness would be in doubt. To obtain a critical region for testing 
randomness, it would be necessary to find two values such that some small percentage 
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of the N! values of the serial correlation coefficient lies outside the interval determined 
by the two values. 

It is clear from the preceding discussion that the computational difficulties of the 
outlined test are prohibitive. Hence, it is necessary to find an approximation for the 
probability density function of the serial correlation statistic when N is large. 

Let Y i=Xi+k  for i =  1, 2 , .  . . N-I? and Yn-k+l = Xi for i = 1, 2, . . . k. 
There will be N pairs of values in the calculation of the correlation between Xi and 

t 	 Yi. The resulting correlation coefficient is called the circular form of the serial correla­
tion. The serial  correlation coefficient may be expressed in the form 

i. 

n 
where -?r=l - 2  

n 2 Xi, &2 =: 1(Xi - X) and y and Sy2 are defined similarly. The 
i=l i=1 

statistics %, Y ,  S,, and E$ are independent of the order of the sample values. Thus, 
the only quantity in equation (8) affected by permutations of the sequence is the sum 

n 
P 

R = 2 XiYi (9) 
i=1 

instead of T itself. 

If it is assumed that the values of the sequence being tested constitute a set  of 
values of a random variable with only low order moments, it can be shown that the random 
variable R possesses an approximately normal probability density function for large N. 
The details may be found in reference 7. In order to test the hypothesis of zero correla­
tion, it suffices to know the mean and variance of R. The necessary values a r e  

and 
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where 

The serial correlation statistic with lag k is useful in  constructing tests to detect 
periodicities of around k data points. Since it is suspected that the runs test is not 
sensitive to periodicities of four data points, the ser ia l  correlation test  could be run i n  
conjunction with the runs tes t  with the lag set at 4. This procedure would effectively cor­
rect  the previously mentioned deficiency in the runs test. Otherwise, the lag is simply 
set at the periodicity which one suspects might occur. An example of the application of 
the serial correlation test is given in reference 1 (pp. 302-303). 

THE PERIODOGRAM 

One of the most common methods of detecting hidden periodicities in  a sequence is 
the method of periodogram analysis. Assume that the values of a sequence can be written 
in  the following manner: 

K 


XT = 1(ar COS XrT + br sin hrT) + e T  
r=1 

where e T  is a value of a random variable with an as yet unspecified probability density 
function. It is wished to detect the periods 21~/Xr that have been hidden by the random 
disturbances eT. For this purpose the following statistic has proved to be useful. 

where 

T=l 

T=l  

In(X) is defined as the periodogram of the sequence. The maxima of In(A) correspond 
to h = A,, r = 1, 2, . . .k. Hence the peaks of the periodogram should correspond to 
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hidden periodicities of the sequence. The difficulty with the technique is that there is no 
rigorous way of deciding when the height of a peak is significant without making assump­
tions about the random variable which produced the values of eT. Thus, when used 
rigorously, the periodogram method is not a nonparametric test  for randomness. 

If there are an odd number (n E 2N+1) of e T  values which a r e  values of a random 
variable with a normal probability density function, a rigorous test for  the significance of 
the height of the maximum peak can be based on the statistic 

r=l 

where for  i = 1, 2, . . . n 

The probability function for the statistic g is derived in reference 8. The functional 
form is 

Probability (g > x) = dl -
n- 1 - (n - l)(n - 21n-l 

11 21 

where the sum extends as long as the term of the form (1- kx) is positive. Equa­
tion (15) was solved for the critical values of g for various confidence coefficients and 
various values of N. The results a r e  presented in table 11. For example, if  N = 50 
(that is, 101 data points) the probability that the statistic g will exceed 0.13135 is 0.05. 
If g > 0.13135, it can be assumed to a confidence level of 0.95 that the height of the peak 
corresponding to is significant and that the value of the period corresponding 
to (Sr)" represents a true periodicity in the sequence. 

APPLICATION OF TESTS FOR RANDOMNESS 

General Considerations 

To test a sequence for randomness, one takes as the null hypothesis the proposi­
tion that the points of the sequence constitute a set of values of a random variable with 
continuous probability density function. But when confronted with a sequence to be tested 
for randomness, the scientist is seldom in a position to choose a form for the probability 

.11 




TABLE II.- CRITICAL VALUES OF g 

N- 2Probability (g 5 X) = N(l  - X)N-l N(N - 1)(1 - 2X) . . .  
I! 21 

L 

+ N(N - - + - MT)k-l where k is the largest integer
k! 

N 

10 
20 
30 
40 
50 
60 
70 

a0 
90 


100 


0.01 

0.53584 
.32921 
.24124 
.19156 
.15954 
.11309 
,099 53 
.oa903 
.oao64 
.0737a 

0.02 

0.49868 
.304ao 
.222a7 
.17705 
.147 54 
.i26a6 
.11150 
.09962 
.09014 
.oa239 

0.05 

0.4449 5 
.27040 
,19784 
. i m a  
.13135 

.i37oa 
.1204 1 
.lo751 
.09723 
.oa8a2 

density function of the random variable from which the points came. 

most of the tes ts  discussed previously were nonparametric in nature. In a nonparamet-


For this reason 

r ic  test  the null hypothesis is formulated without resor t  to an assumption concerning the 
random variable which produced the data points. It is this feature which makes nonpara­
metric tests extremely useful in testing sequences for randomness. The unfortunate 
aspect of nonparametric statistics is that it is virtually impossible to order nonparamet­
r ic  tests with respect to power and to decide in a given situation which is the best test  to 
use. Thus, an element of arbitrariness enters into the choice of tes t s  for  the discovery 
of nonrandomness in a given sequence. But as will be seen, this arbitrariness need not 
be absolute. In subsequent sections two different types of nonrandom sequences a r e  dis­
cussed and by means of examples, indications a r e  given as to the most advantageous sor t  
of nonparametric test  to be used on each. 

Periodic and Nonperiodic Sequences 

Let Xi be the ith element in a sequence and let fi(X) be the probability density 
function of the random variable of which Xi is a value. Then a sequence is said to be 
periodic if there exists an m such that fi(X) = fi+m(X) for all i. If m is the small­
est number which satisfies this condition, the sequence is said to be periodic of period m. 
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If m = 1, the sequence is random and is not considered periodic. If the physical situa­
tion giving rise to a certain sequence of data points is repetitive in nature, one would 
expect nonrandomness in the sequence to be periodic in nature. If the physical situation 
which produced the sequence of data points is nonrepetitive, it would be more likely that 
nonrandomness in  the sequence be nonperiodic. 

Confidence Coefficients 

' If P is the confidence coefficient of a statistical test of a hypothesis, then 1 - P 
is the probability of the test  rejecting the hypothesis when in  fact it is true. If one wishes 
to  use a battery of statistical tes ts  in order to decide on the acceptance or rejection of a 
hypothesis, certain questions must be decided: First, what kind of outcome of the battery 
of tests should correspond to a rejection of the hypothesis, and second, what is the con­
fidence coefficient of the battery of tes t s  when used in this fashion? 

Suppose N tes ts  of a certain hypothesis a r e  to be used in sequence and suppose all 
tes ts  are designed with a confidence coefficient of P. If it is decided that the hypothesis 
is to be rejected if k or more of the tests reject the hypothesis, and furthermore, i f  it is 
assumed that the tests a r e  independent (this is usually a bad assumption but considera­
tions of dependence are very difficult and can only serve to ra ise  the confidence coeffi­
cient anyway), the confidence coefficient of the battery reviewed as a single test  is 

n 

p =  1(;)(1 - P)r(P)n-r 
r=K 

EXAMPLE OF A TEST FOR PERIODIC NONRANDOMNESS 

A battery of seven tes ts  has been chosen for the detection of periodic nonrandom­
ness in sequences. The first is the median test on the total number of points in the 
sequence. The next six tests  are of a ser ia l  correlation variety described previously. 
The lags are chosen to detect periodicities suspected to be present. This se r ies  of tests 
are applied to two sequences. The first sequence contains 200 points, all of which were 
chosen from a table of random numbers given in reference 4 (pp. 451-454). The numbers 
can be thought of as a set of values of a random variable whose probability density func­
tion is rectangular between 0 and 1000. These data a r e  plotted in figure 1. The second 
sequence to be tested is obtained by imposing a sine wave of period 30 points and ampli­
tude 300 on the data of figure 1. This new sequence is plotted in figure 2. 

Each test  is designed with a 0.99 confidence coefficient and the hypothesis of ran­
domness is to be rejected if at least two of the seven tes t s  reject the hypothesis. Under 
these conditions the confidence coefficient of the test  is according to equation (16) 
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-
P = 0.99 

The lags chosen for  the six serial correlation tests a r e  15, 30, 45, 60, 75, and 90. Since 
the sequence of figure 1 was constructed to be random, it would be hoped that the serial 
correlation statistic of equation (9) would be insignificant for all six values of the lag. 
But, since the sequence of figure 2 contains a sine wave of period 30 points, the serial 
correlation statistic would be expected to be significantly low for  odd half-period lags of 
15, 45, and 75 and significantly high for integer period lags of 30, 60, and 90. 

I ooc 

W
3 

c
._a 500 
E 
a 


n
1 

0 20 40 60 80 100 120 140 160 180 200 
Position in sequence 

Figure 1.- Random data. 

0 


‘“Qo, 
’ OO 

3 
0 

0 0  


3 
Position i n  sequence 

Figure 2.- Random data with sine wave of period 30 points and amplitude 300. 

The results of these tests as performed on the random data of figure 1 are: 

(a) the number of runs in the 200 data points is 111 

(b) The serial correlation statistics a r e  as follows: 
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- .  . - _ 

Serial correlation statistic -

0.4650 x lo8 
.4846 
.4726 
.4671 
.47 58 
.4703 

- .  _ _ ­

1L"g 

75I- 90 

If table I is consulted, with a 0.99 confidence coefficient, a random sequence of 
200 numbers should contain between 85 and 118 runs of the type used in the median test. 
Therefore, the sequence passes the median test. 

If the approximation to the ser ia l  correlation statistic discussed in reference 4 
(pp. 264-265) is used, the serial correlation statistic fo r  this sequence with a 0.99 confi­
dence coefficient should lie between 0.4435 X lo8 and 0.5050 X lo8. Clearly, the sequence 
passes  the six serial correlation tests. The conclusion must be that the battery of tests 
has failed to detect any nonrandomness in the sequence. 

Using the same tes ts  on the data found in figure 2 yields the following results: 

(a) The number of runs in  the 200 data points is 89. 

(b)The ser ia l  correlation statistics a r e  as follows: 

_ _ ~ _ _  -

Serial correlation statistic 
_ _ _ _ _  - - -.- - ~ 

0.3898 x lo8 
.5842 
.4287 
.5362 
.4625 
.5079 _ _ _ _ _ _ _ ~ _  ~-

~ 

Lag 

15 

30 
45 
60 
75 
90 

~ 

The sequence passes the median test. Again, using the approximation discussed in  
reference 4 (pp. 264-265), the serial correlation statistic of this sequence and with a con­
fidence coefficient of 0.99 should lie between 0.4427 X lo8 and 0.5442 X lo8. The sequence 
fails the first three serial correlation tests;  therefore to a confidence coefficient of 0.99, 
the sequence is declared nonrandom, Noting further that the serial  correlation statistics 
with lags 15 and 45 a r e  significantly low and the ser ia l  correlation statistic with lag 30 is 
significantly high suggests a nonrandom periodicity of period 30 points. And this, of 
course, is the case. 
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EXAMPLE OF A TEST FOR NONPERTODIC NONRANDOMNESS 


The series of tests to be used for the detection of nonperiodic nonrandomness is as 
follows. The points of the sequence are split into four parts. If the sequence has 200 
points, part one consists of the first 50 points, part two of the second 50 points, etc. 
These sets  a r e  then compared pairwise by the two-sample test discussed previously. The 
two-sample test is a runs tes t  but it involves a different type of run from the one used in 
the runs test of the first example. Nevertheless, the same probability density function is 
used in the construction of both types of runs test. Thus table I will again be useful. The 
two-sample test is an aid in deciding when a different type of statistical law is controlling 
the behavior of the second set of elements from that which is controlling the first set and 
so forth. Clearly, there will be six such tests. The seventh test will be a serial  correla­
tion test with lag 1. A s  was the case in the first example, each separate test is designed 
with a confidence coefficient of 0.99 and it is agreed to reject the hypothesis if at least two 
of the tests reject the hypothesis. The confidence coefficient i? of the test will again 
be 0.99. 

Two sequences a re  tested. The first sequence to be tested is again the random data 
obtained from reference 8 and plotted in figure 1. The second sequence w a s  obtained by 
adding a linear bias of 1.3 per point to the data of figure 1. This sequence is plotted in 
figure 3. Let A1 be the first fifty points, A2 the second, etc. Then the results of the 
tests applied to the first sequence are: 

(a) The number of runs are as follows: 

A1 and A2 52 
A1 and A3 48 
A1 and A4 49 
A2 and A3 52 
A2 and A4 49 
A3 and A4 51 
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Figure 3.- Random data with linear bias of 1.3 per point. 

Applying the same set of tests to the sequence plotted in figure 3 yields the following 
results: 

(a) The number of runs are as follows: 

Runs between ­
.. 

A1 andA2 
A1 and A3 
A1 and A4 
A2 and A3 
A2 and A4 
A3 and A4 

Number of runs 

42 
44 
36 
52 
34 
48 

(b) The serial correlation statistic with lag 1is 0.7670 X lo8. 
The number of runs between A1 and A4 and between A2 and A4 are  significantly low. 

The serial  correlation statistic for this sequence and with a confidence coefficient of 0.99 
should lie between 0.7291 x lo8 and 0.7968 X lo8. The sequence passes the serial correla­
tion test. But since two of the seven tests reject the randomness hypothesis, with a con­
fidence coefficient of 0.99 the sequence must be judged to be nonrandom. 
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CONCLUDING REMARKS 

When a test is designed for nonrandomness in sequences, it is important to decide 
what type of nonrandomness the test is expected to detect. The most important dichotomy 
on nonrandom sequences seems to be the one which differentiates between periodic and 
nonperiodic nonrandomness. For this reason, examples were given of tests designed to 
detect each of these types of nonrandomness. Experience indicates that the test described 
in the first example is the most effective in detecting periodic nonrandomness and the tes t  
described in the second example is the most effective in detecting nonperiodic nonrandom­
ness. It is also worth mentioning that the tests to be used in the detection of nonrandom­
ness should be chosen before the data to be tested is seen. Any other procedure can ruin 
the statistical rigor of the test and seriously bias the outcome. 

The median test  has been found to be an efficient tool in detecting periodicities of 
period 10 points or more. It is a flexible test in the sense that the statistician need not 
have a hint of the period of the nonrandom disturbance present in order to apply the test 
effectively. The penalty for this flexibility is a lack of precision. If it is known that a 
certain sequence has failed the runs test, one might suspect the presence of a nonrandom 
periodic disturbance. The test, however, gives no hint as to the period of the disturbance. 
The case with the serial correlation test is precisely the opposite. It is not effective 
unless the statistician has a suspicion of the period of a nonrandom periodicity present. 
But the serial  correlation test has the ability to confirm almost positively any such 
suspicion. 

The periodogram test  has both the flexibility of the runs test and the precision of 
the serial  correlation test. But the hypothesis it tests is not simply that a given sequence 
is random but that a sequence is random and that its elements are values of a normal 
random variable. Thus it cannot be applied rigorously to the large number of situations 
that nonparametric tests can. 

Of the two types of nonrandomness discussed, nonperiodic nonrandomness is the 
more difficult to detect and classify. It was  hoped that the runs test used in the first 
example would also be effective in detecting nonperiodic disturbances. Limited experi­
ence has not shown this to be the case. Also it should be noticed'that the two-sample­
runs test is designed to test the same statistical hypothesis as the Wilcoxon test, namely, 
that two samples are sets of values of the same random variable. Therefore there is no I( 

rigorous reason for using one test in preference to the other. But again experience has 
indicated that the two-sample-runs test is somewhat more effective i n  detecting nonran­
domness. The serial  correlation test with lag 1 has been found to be effective in detecting 
gradual drifts  in the mean of the sequence. Drifts  in the variance are more difficult to 
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detect. In fact, it appears as if  unless the drift in variance is drastic, there is no non­
parametric test which is completely adequate in discovering a changing variance. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 19, 1966, 
129-04-01-01-23. 
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